Quantum Computing

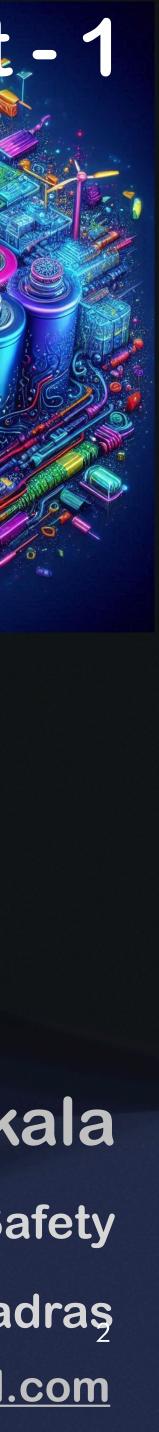
0

Sudarshana Karkala | © +91 9845561518 | 🖂 carsoftwaresystems @ gmail.com | carsoftwaresystems.com

100000000

Q-AI Powered EV Battery Fire Prevention System

EV Cybersecurity


Quantum Computing Q-AI - Powered EV Battery Fire Prevention System

© +91 9845561518 | evdc12001

Sudarshana Karkala

- **EV.Engineer, AI-Driven Battery Safety**
- Electric Vehicle Engineering & Development, CODE, IIT Madraş
- © +91 9845561518 | evdc1200125014 @ code.iitm.ac.in | car software systems @ gmail.com

Sudarshana Karkala | @ +91 9845561518 | 🖂 ca softwaresystems @ gmail.com | carsoftwaresys

courtesy: https://cdn-dynmedia-1.microsoft.com/is/image/microsoftcorp/quantum-machine? resMode=sharp2&op_usm=1.5,0.65,15,0&wid=2712&qlt=100&fit=constrain

What is Quantum Computing?

- quantum mechanics to perform complex calculations at unprecedented speeds.
- Unlike classical computers that use bits (0 or 1), ulletQuantum computers use Qubits, which exist in superposition (both 0 and 1 simultaneously).
- exponential speed-ups for solving specific problems.

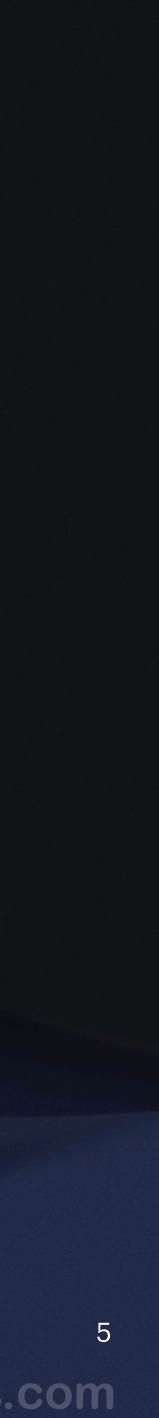
Sudarshana Karkala | © +91 9845561518 | 🖂 carsoftwaresystems @ gmail.com | carsoftwaresystems.com

Quantum Computing is a new paradigm of computing that leverages the principles of

Quantum properties like superposition, entanglement, and interference provide

Why Quantum Computing is Revolutionary?

Classical vs Quantum Comparison


- Classical AI : Sequential processing, limited by binary logic.
- Quantum AI : Parallel processing using qubits, enabling faster problem-solving.

Exponential Speedup

Quantum computers can solve problems that would take classical computers millions of years in just minutes.

Key Applications

- Cryptography
- Al & Machine Learning
- **Material Science**
- **EV** Battery Optimisation

Key Quantum Concepts

• Qubits :

The fundamental unit of quantum computation, capable of existing in multiple states at once.

• Superposition :


A qubit can be both 0 and 1 at the same time, enabling parallel computation.

• Entanglement :

A unique quantum phenomenon where qubits are interconnected, allowing instantaneous information transfer.

Quantum Interference :

The ability to manipulate qubit probability distributions to achieve optimal outcomes.

Real-World Quantum Applications in Energy & EVs

Battery Chemistry Optimisation:

and faster charging.

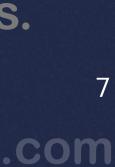
Predictive Battery Health Management:

Quantum AI models improve battery lifespan predictions and prevent thermal runaway.

Quantum-Powered Energy Optimisation:

and energy distribution in EVs.

Quantum Cryptography for EV Security:


• Quantum computing accelerates the discovery of new battery materials with higher energy density

• Quantum Approximate Optimisation Algorithms (QAOA) enable more efficient charging, discharging,

Quantum Key Distribution (QKD) ensures unbreakable encryption for EV communication networks.

Quantum Computing vs Classical Computing in EV Batteries

Classical EV Battery Simulations:

- Uses numerical methods for battery chemistry and performance modelling.
- Limited by processing power and complexity of equations.
- Example: Traditional simulations struggle to predict degradation patterns in high-capacity solid-state batteries.

Quantum-Powered EV Battery Simulations:

- Uses Quantum Chemistry Algorithms for molecular-level material discovery. igodot
- **Optimises electrochemical reactions for next-gen battery efficiency.**
- Example: IBM and Daimler successfully used quantum simulations to study lithium-sulfur battery mate improving efficiency and reducing computational time significantly.

Quantum Machine Learning (QML) for EV Batteries

Why QML?

- Enhances pattern recognition in battery failure detection.
- Can model high-dimensional battery degradation faster than classical Al.
- Integrates with existing Battery Management Systems (BMS) to provide real-time insights and predictive maintenance alerts.
- Works alongside classical AI models to optimise battery performance while reducing ulletcomputational overhead.

QML Use Cases in EV Batteries:

- **Battery Health Prediction using Variational Quantum Circuits (VQC).**
- Thermal Runaway Risk Analysis using Quantum Neural Networks (QNNs).
- Quantum-enhanced BMS Decision-Making: Helps optimise battery usage based on real-time conditions. Sudarshana Karkala | © +91 9845561518 | 🖂 carsoftwaresystems @ gmail.com | carsoftwaresystems.com

Quantum Optimisation for Battery Charging & Discharging

Challenges in Battery Optimisation:

- Classical algorithms struggle with multi-variable optimisation in real-time energy management.
- Limited efficiency in predicting battery degradation and optimal charge cycles.

Quantum Approximate Optimisation Algorithm (QAOA):

- **Optimises charging cycles to extend battery lifespan.**
- Reduces charging time while preventing overcharging risks.
- Real-World Study: Researchers at Volkswagen and D-Wave Systems have explored QAOA for • optimising battery performance and EV fleet energy management, showing significant improvements in energy distribution and longevity.

Quantum Cryptography for EV Battery Cybersecurity

Why Cybersecurity Matters?

EV batteries are connected devices, vulnerable to hacking and data breaches.

Quantum Cryptography Solutions:

- Quantum Key Distribution (QKD): Ensures secure communication in EV networks.

Sudarshana Karkala | © +91 9845561518 | 🖂 carsoftwaresystems @ gmail.com | carsoftwaresystems.com

Post-Quantum Cryptography (PQC): Protects battery data storage and firmware updates.

The Future of Quantum Computing in EV Batteries

Next-Generation Battery Materials:

Quantum simulations will discover new high-density, fast-charging materials.

Al-Quantum Hybrid Models:

Future EVs will combine AI & Quantum AI for maximum efficiency.

Scalable Quantum Computing for Commercial EV Use:


Quantum computers will become cost-effective and mainstream in battery R&D.

The Future of Quantum Computing in EV Batteries

Challenges & Limitations :

- Hardware Scalability : Current quantum processors have limited qubit stability and error rates.
- Cost & Infrastructure : Quantum computing requires specialised cryogenic environments, making widespread deployment costly.
- Integration with Classical Systems : Quantum computing needs to work alongside classical AI & existing BMS for practical adoption.
- Standardisation & Regulation : EV industry standards for quantum-driven optimisations and security protocols are still evolving.

Quantum Computing Hardware & Platforms for EV Research

- IBM Quantum & Qiskit : Provides access to real quantum processors for battery \bullet material research. (Link)
- Microsoft Azure Quantum : Focuses on Majorana qubits for scalable, fault-tolerant \bullet quantum computing. (Link)
- simulations. (Link)
- ightarrowand fleet management.
- battery optimisation. (Link)

Google Sycamore : Achieved quantum supremacy and conducts high-speed quantum

Tesla & Quantum Optimisation : Exploring quantum applications for EV battery charging

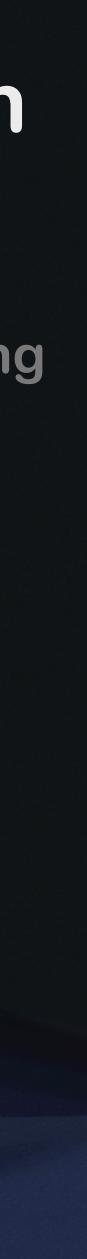
Facebook (Meta) & Quantum AI : Investigating Quantum Neural Networks for AI-driven

Sudarshana Karkala | © +91 9845561518 | 🖂 carsoftwaresystems @ gmail.com | carsoftwaresystems.com

14

Quantum Computing Algorithms for EV Battery Research

- ulletmolecular structures for higher energy density.
- \bullet management by balancing power loads efficiently.
- ightarrowhealth monitoring.
- lifespan.


Sudarshana Karkala | © +91 9845561518 | 🖂 carsoftwaresystems @ gmail.com | carsoftwaresystems.com

Variational Quantum Eigensolver (VQE) : Used for battery material discovery, simulating

Quantum Approximate Optimisation Algorithm (QAOA) : Optimises battery energy

Quantum Support Vector Machines (QSVM) : Enhances anomaly detection in battery

Quantum Neural Networks (QNNs) : Helps predict battery failure risks and optimise

15

Quantum Computing & Al Integration for EVs


- \bullet with quantum-enhanced accuracy.
- ightarrow
- \bullet efficient charging cycles

Sudarshana Karkala | © +91 9845561518 | 🖂 carsoftwaresystems @ gmail.com | carsoftwaresystems.com

Hybrid Quantum-Classical Al Models : Al-powered battery performance predictions

Quantum AI in Battery Safety : Identifying thermal runaway risks before they occur.

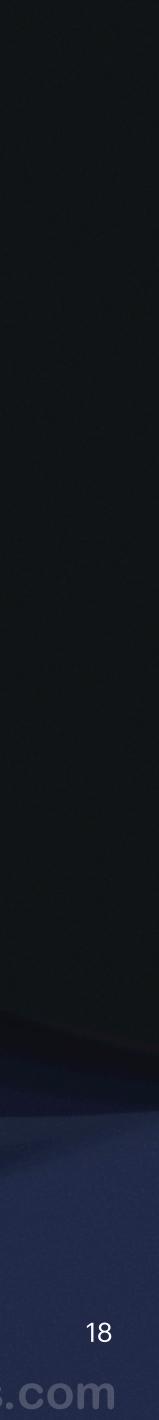
Quantum Deep Learning for EV Data Analysis : Processing large-scale battery data for

Industry Use Cases & Research

- IBM & Daimler : Used quantum simulations for lithium-sulfur battery development. \bullet
- Volkswagen & D-Wave : Explored QAOA for EV fleet energy optimisation. \bullet
- infrastructure.
- ullet
- **Example : How quantum optimisation reduces charging station congestion.** ightarrow

Google's Quantum AI : Investigating quantum solutions for power grid management in EV

Tesla's Research : Exploring quantum methods to enhance supercharger efficiency.


The Road Ahead – Challenges & Future Prospects

Challenges:

- Hardware scalability and qubit stability remain barriers to mainstream adoption.
- Cost of quantum infrastructure and integration with classical systems.

Future Prospects :

- Advancements in quantum error correction to enable practical quantum computing.
- Increased collaboration between EV manufacturers and quantum researchers.
- The rise of Quantum Cloud Computing, allowing real-world applications. •
- Advanced Topic : Post-Quantum Cryptography in secure EV network communications.

Practical Implementation of Quantum Computing in EV Batteries

- How to Get Started with Quantum Computing in EV Research? ightarrow
 - Qiskit & IBM Quantum: Simulating battery materials.
 - Google Cirq: Implementing Quantum ML for predictive maintenance.

https://quantumai.google/cirg/

- Hands-on Quantum Simulation for EV Batteries:
 - Running VQE-based simulations for new materials.
 - Implementing Quantum Neural Networks (QNNs) for failure detection.
- **Practical Case Study:** •
 - Research team at MIT used Quantum Computing for battery longevity prediction.

Sudarshana Karkala | © +91 9845561518 | 🖂 carsoftwaresystems @ gmail.com | carsoftwaresystems.com

19

Simulating Quantum Battery Systems

- Why Simulations Matter? ullet
 - 0 real-world limitations.
- **Tools for Quantum Battery Simulation:** ullet
 - **IBM** Quantum Experience & Qiskit 0
 - Google Cirq for hybrid quantum-classical experiments 0
- **Practical Implementation Steps:**
 - **Develop quantum circuits for simulating electrochemical reactions.** 0
 - 0

Sudarshana Karkala | © +91 9845561518 | 🖂 carsoftwaresystems @ gmail.com | carsoftwaresystems.com

Quantum simulations help test new materials and energy storage methods without

Use quantum chemistry algorithms to test new battery electrolyte compositions.

Hybrid Quantum-Classical Systems for Battery Management

- How Classical AI & Quantum AI Work Together:
 - Quantum AI refines data-driven decisions made by classical AI models. •
- Hybrid Quantum-Classical BMS:
 - Uses Quantum ML for real-time energy management. ullet
- **Practical Example:**
 - IBM's quantum-classical AI model optimised solid-state battery efficiency.

Sudarshana Karkala | © +91 9845561518 | 🖂 carsoftwaresystems @ gmail.com | carsoftwaresystems.com

Reduces computational overhead by offloading high-complexity tasks to quantum hardware.

Future Technology – Quantum-Powered Solid-State Batteries

- What are Solid-State Batteries?
 - Higher energy density and longer cycle life compared to lithium-ion. 0
- How Quantum Computing Enhances Solid-State Battery Research?
 - Simulating ionic conductivity in solid electrolytes. 0
 - Predicting chemical stability for safer battery designs. 0
- **Practical Application:** ullet
 - 0

Quantum simulations helped Toyota develop new solid-state battery prototypes.

Sudarshana Karkala | © +91 9845561518 | 🖂 carsoftwaresystems @ gmail.com | carsoftwaresystems.com

22

Quantum Computing in EV Manufacturing & Smart Charging Networks

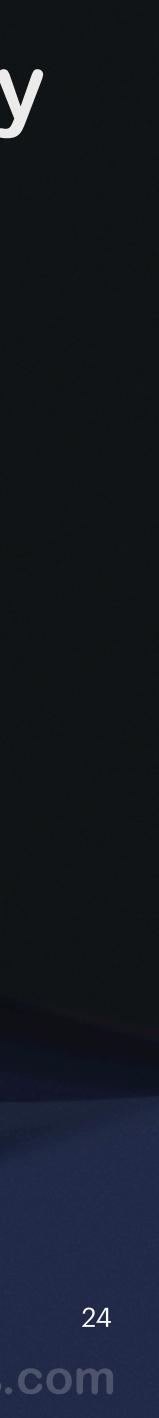
- **Quantum for Manufacturing Optimisation:**

 - Enhancing battery assembly line efficiency.
- **Quantum AI in Charging Networks:**
 - Real-time quantum-optimised dynamic charging scheduling.
 - Tesla's research on smart energy distribution with quantum computing.

Reducing material waste with quantum-powered supply chain optimisation.

Sudarshana Karkala | © +91 9845561518 | 🖂 carsoftwaresystems @ gmail.com | carsoftwaresystems.com

23


Advanced Quantum Deep Learning for Battery Safety

Quantum Convolutional Neural Networks (QCNNs):

- Applied to time-series sensor data from BMS (voltage, current, temperature). 0
- Detects spatial and temporal anomalies across battery cell arrays. 0
- Technical Note: QCNNs use parameterised quantum circuits (PQCs) to reduce feature 0 space dimensionality.
- Practical Use Case: Flagging early signs of lithium plating or cell swelling. 0

Quantum Autoencoders:

- **Compress high-dimensional battery data into quantum latent space.** 0
- **Reconstructs input to detect deviations indicating cell degradation.** 0
- Used for unsupervised anomaly detection in EV BMS firmware. 0

Quantum Reinforcement Learning for Smart Battery Management

Quantum Reinforcement Learning (QRL):

- Combines quantum-enhanced policies with classical reward-based training.
- Learns optimal charging/discharging actions under varying temperature/load cycles.
- Architecture: Uses quantum policy networks encoded via variational circuits.

Practical Example:

- Tesla's autonomous energy allocation system integrating QRL for real-time charge optimisation.
- Fleet-based QRL simulation: optimising energy usage of 1000+ EVs with minimal • computation time.

Sudarshana Karkala | © +91 9845561518 | 🖂 carsoftwaresystems @ gmail.com | carsoftwaresystems.com

25

Quantum-Powered Federated & Privacy-Preserving Learning

Federated Learning with Quantum Privacy:

- Each EV locally trains an AI model; global model aggregated via secure quantum 0 channel.
- Benefit: No raw battery data transmission; prevents privacy breaches. 0

Post-Quantum Cryptography Integration:

- Secure OTA updates and diagnostics using lattice-based cryptographic schemes. 0
- Quantum-proof communication for inter-vehicle data sharing. 0

Real-World Application:

Collaboration among EV brands to train Quantum-AI models without exposing 0 proprietary data.

26

Quantum Bayesian Inference for Battery Health Forecasting

Quantum Bayesian Networks:

- Encodes uncertainty in thermal behaviour, degradation, and material instability.
- Ideal for multi-variable diagnostics where probability evolves over time. ullet

Technical Detail:

Uses amplitude encoding and quantum interference for posterior probability calculation.

Use Case:

Predict the likelihood of battery cell failure based on charge-discharge history, ambient temperature, and historical trends. Sudarshana Karkala | © +91 9845561518 | 🖂 carsoftwaresystems @ gmail.com | carsoftwaresystems.com

27

Quantum AI in Edge BMS & Digital Twin Simulations

Edge-Based Quantum Neural Networks (QNNs):

- Low-depth QNNs run on quantum chips integrated into next-gen BMS SoCs. 0
- Enables real-time anomaly prediction with reduced energy footprint. 0


Quantum Digital Twins:

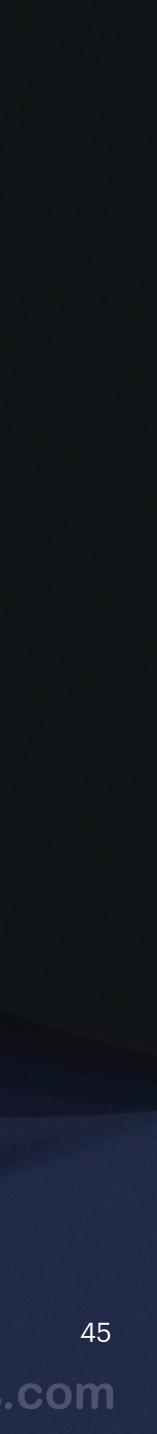
- Mirror real battery systems using quantum simulations. 0
- Run thousands of hypothetical stress scenarios in parallel. 0


Practical Example:

- 0
- Used in BMW's predictive safety modules. 0

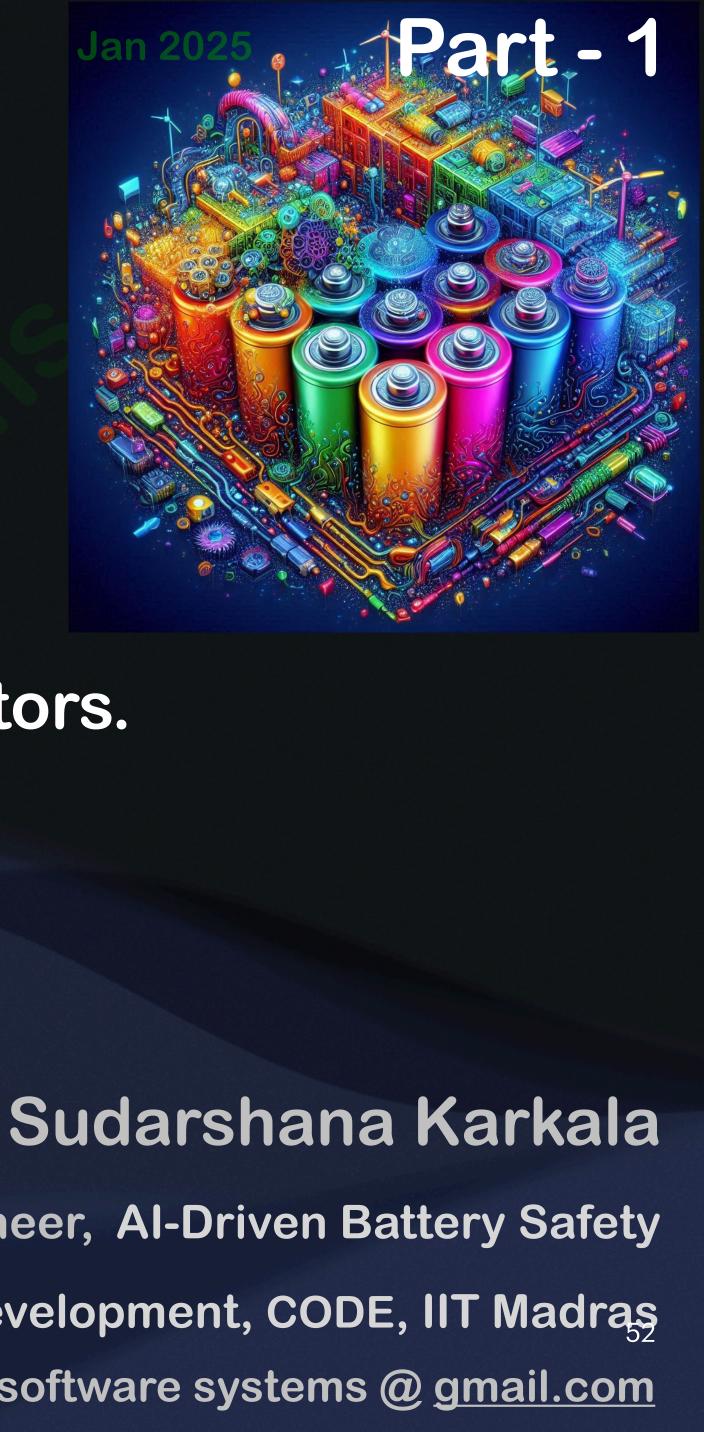
Quantum twin identifies overheating pattern 5 minutes before temperature breach.











Join Us in Creating a Fire-Free EV Future! Looking for Strategic Partners, Pilot Customers & Investors. Thank you

- **EV.Engineer, AI-Driven Battery Safety**
- Electric Vehicle Engineering & Development, CODE, IIT Madraş
- © +91 9845561518 | evdc1200125014 @ code.iitm.ac.in | car software systems @ gmail.com